
Chapitre 4

Potentiels thermodynamiques

4.6 Rayonnement du corps noir

Un corps noir désigne un objet en l’équilibre thermique avec l’environ-
nement qui émet un rayonnement dont la densité volumique d’énergie interne
ne dépend que de la température. L’énergie interne de ce rayonnement est de
la forme,

U (S, V ) =
3

4

(
3c

16σ

)1/3

S4/3V −1/3

où c est la vitesse de la lumière dans le vide et où σ est la constante de Stefan-
Boltzmann.

1) Déterminer l’énergie libre F (T, V ) du rayonnement.

2) Montrer que l’énergie interne U (S, V ) du rayonnement peut être obtenue en
opérant une transformation de Legendre inverse de l’énergie libre F (T, V ).

3) Trouver les expressions p (T, V ) et p (S, V ) de la pression du rayonnement.

4.7 Gaz parfait

Les gaz suffisamment dilués se comportent comme des gaz parfaits à
température ambiante. Au chapitre 5, on montrera que la variation de l’entropie
d’un système simple constitué de N moles de gaz parfait lors d’un processus
i→ f s’écrit,
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)
où c est un paramètre constant positif, R est la constante des gaz parfaits, Ui

et Uf sont les énergies internes initiale et finale et Vi et Vf sont les volumes
initial et final.
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1) Montrer que l’entropie du gaz parfait peut alors être écrite comme,

S (U, V ) = NR ln
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où l’entropie S0, l’énergie interne U0, le volume V0 sont des constantes. Ces
constantes satisfont les identités suivantes,

U0 = cNRT0 = c p0 V0

où la température T0 et la pression p0 sont aussi des constantes.

2) Déterminer l’énergie interne U (S, V ) du gaz parfait.

3) Déterminer l’énergie libre F (T, V ) du gaz parfait.

4) Déterminer l’enthalpie H (S, p) du gaz parfait.

5) Déterminer l’énergie libre G (T, p) du gaz parfait.

4.13 Propriétés thermomécaniques d’un élastique

L’état d’un élastique est décrit par les variables d’état entropie S
et de longueur L. La différentielle de l’énergie interne U (S,L) de l’élastique
s’écrit,

dU (S,L) =
∂U (S,L)

∂S
dS +

∂U (S,L)

∂L
dL = T (S,L) dS + f (S,L) dL

où f (S,L) est la norme de la force résultante exercée sur l’élastique. Les pro-
priétés physiques du matériau de l’élastique sont caractérisées par le coefficient
de dilatation à force constante,

αf =
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L
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le coefficient de compressibilité isotherme,

χT =
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L
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et la capacité thermique à longueur constante,

CL = T
∂S (T, L)

∂T

Utiliser ces trois propriétés physiques du matériau, considérées comme des
constantes, pour répondre aux questions suivantes.

1) Déterminer la dérivée partielle de la force résultante f (T, L) exercée sur
l’élastique par rapport à la température lorsque sa longueur est fixée.

2) Exprimer le transfert de chaleur durant la variation isotherme de la lon-
gueur ∆Li→f de l’élastique d’un état initial i à un état final f .

3) Déterminer la dérivée partielle de la température T de l’élastique par rap-
port à sa longueur L lors d’un processus adiabatique réversible.
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4.15 Sous-systèmes et réservoir de chaleur et de travail

On considère un système fermé et déformable contenant un gaz homo-
gène. Le système est constitué de deux sous-systèmes simples séparés par une
paroi fixe, perméable et diatherme. Le système a une température T et une
pression p constantes car il est à l’équilibre thermique et mécanique avec un
réservoir de chaleur et de travail à température T ext et pression p ext (fig. 4.1).
L’énergie interne de la paroi est négligeable.

1) Exprimer la différentielle de l’énergie libre dG en fonction de la source
d’entropie ΣS .

2) Exprimer la différentielle de l’énergie libre dG en fonction des potentiels
chimiques µ1 et µ2 du gaz dans les sous-systèmes 1 et 2. En déduire que
dG 6 0.

4.16 Turbine isotherme

On considère un système ouvert constitué de deux sous-systèmes
simples, considérés comme des blocs rigides contenant un fluide incompressible
homogène en mouvement à vitesse uniforme. Les deux blocs sont séparés par
une turbine effectuant un travail externe sur le fluide lors de son transfert
du sous-système 1 au sous-système 2. L’ensemble est maintenu à température
constante T (fig. 4.2). L’énergie interne de la machine est négligeable. Les trans-
ferts de chaleur et de matière à travers la machine sont stationnaires. Ainsi,
par rapport au référentiel des blocs, les vitesses v1 et v2 du fluide dans les
deux blocs sont constantes et telles que v2

1 > v2
2. De plus, l’énergie cinétique

de rotation de la turbine est constante et n’intervient pas dans l’analyse.

Fig. 4.1 Un système fermé et déformable contenant un gaz homogène est divisé en deux
sous-systèmes simples par une paroi fixe, perméable et diatherme. Le système est à l’équilibre
thermique et mécanique avec un réservoir de chaleur à température T ext et pression p ext.
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Fig. 4.2 Une turbine effectue un travail externe sur un fluide qui est transféré de manière
stationnaire du bloc 1 au bloc 2 à température constante. Les courants de chaleur I 0→1

Q et

I 2→0
Q décrivent le transfert de chaleur entre l’environnement et le système et les courants

énergétiques de matière I 0→1
C et I 2→0

C décrivent le transfert de matière.

On dénote I 0→1
Q et I 0→1

C le courant de chaleur et le courant énergétique

de matière de l’environnement vers le bloc 1, I 1→2
Q et I 1→2

C le courant de

chaleur et le courant énergétique de matière du bloc 1 vers le bloc 2, et I 2→0
Q et

I 2→0
C le courant de chaleur et le courant énergétique de matière du bloc 2 vers

l’environnement. On suppose que le transfert de matière entre l’environnement
et chaque bloc a lieu au potentiel chimique du bloc. Au chapitre 8, on montrera
que les potentiels chimiques du fluide dans les sous-systèmes s’écrivent,

µ1 = h1 − T s1 et µ2 = h2 − T s2

où h1 et h2 sont les enthalpies molaires du fluide dans les deux blocs et s1 et
s2 sont les entropies molaires du fluide dans les deux blocs. Durant le transfert
stationnaire de matière et de chaleur :

1) Montrer que les courants de fluide satisfont l’identité,

I = I 0→1 = I 1→2 = I 2→0 > 0

2) À l’aide des équations de bilan de masse et des courants de masse,

I 0→1
M = mI 0→1 et I 2→0

M = mI 2→0

où m est la masse molaire du fluide, montrer que les courants de masse
satisfont l’identité,

IM = I 0→1
M = I 1→2

M = I 2→0
M > 0

3) À l’aide des courants d’entropie,

I 0→1
S = s1 I

0→1 et I 2→0
S = s2 I

2→0

exprimer le courant de chaleur IQ de l’environnement vers le système en
termes du courant de fluide I et des entropies molaires s1 et s2.
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4) Exprimer le courant énergétique de matière IC de l’environnement vers le
système en termes du courant de fluide I, des enthalpies molaires h1 et h2
et des entropies molaires s1 et s2.

5) Déterminer le courant d’énergie interne IU de l’environnement vers le sys-
tème.

6) Exprimer la puissance extérieure P ext de la tubrine en termes du courant
de fluide I et de la masse molaire m.

7) Déterminer la relation qui lie les enthalpies molaires h1 et h2 et les vitesses
v1 et v2 du fluide.

8) Dans le cas particulier où la turbine se comporte comme une paroi per-
méable qui laisse simplement passer le fluide d’un bloc à l’autre sans effec-
tuer de travail externe, c’est-à-dire que P ext = 0, lier les vitesses v1 et v2

entre elles et les enthalpies molaires h1 et h2 du fluide entre elles.


