CHAPITRE 4

Potentiels thermodynamiques

4.6 Rayonnement du corps noir

WYook  Un corps noir désigne un objet en 1’équilibre thermique avec ’environ-
nement qui émet un rayonnement dont la densité volumique d’énergie interne
ne dépend que de la température. L’énergie interne de ce rayonnement est de
la forme,
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ou c est la vitesse de la lumieére dans le vide et ou o est la constante de Stefan-
Boltzmann.

1) Déterminer I’énergie libre F (T, V) du rayonnement.

2) Montrer que I'énergie interne U (S, V') du rayonnement peut étre obtenue en
opérant une transformation de Legendre inverse de 1’énergie libre F' (T, V).

3) Trouver les expressions p (T, V) et p (S, V) de la pression du rayonnement.

4.7 Gaz parfait

WYOKX  Les gaz suffisamment dilués se comportent comme des gaz parfaits &
température ambiante. Au chapitre 5, on montrera que la variation de ’entropie
d’un systéme simple constitué de N moles de gaz parfait lors d'un processus
1 — f s’écrit,
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ou c est un parametre constant positif, R est la constante des gaz parfaits, U;

et Uy sont les énergies internes initiale et finale et V; et Vy sont les volumes
initial et final.
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1) Montrer que l'entropie du gaz parfait peut alors étre écrite comme,

U\ V
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ou l'entropie Sy, ’énergie interne Uy, le volume V}) sont des constantes. Ces
constantes satisfont les identités suivantes,

Up=cNRTy =cpoVo

ou la température Ty et la pression pg sont aussi des constantes.
) Déterminer I’énergie interne U (S, V) du gaz parfait.
) Déterminer I’énergie libre F' (T, V') du gaz parfait.
4) Déterminer 'enthalpie H (S, p) du gaz parfait.
) Déterminer I’énergie libre G (T, p) du gaz parfait.

4.13 Propriétés thermomécaniques d’un élastique

Yook L’état d’un élastique est décrit par les variables d’état entropie S
et de longueur L. La différentielle de 1’énergie interne U (S, L) de 1’élastique
s’écrit,

oU (S,L) oU (S, L)
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ou f (S, L) est la norme de la force résultante exercée sur ’élastique. Les pro-

priétés physiques du matériau de 1’élastique sont caractérisées par le coefficient
de dilatation a force constante,

dU (S, L) = dL =T (S,L)dS + f(S,L)dL
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le coefficient de compressibilité isotherme,
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et la capacité thermique a longueur constante,
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Utiliser ces trois propriétés physiques du matériau, considérées comme des
constantes, pour répondre aux questions suivantes.

1) Déterminer la dérivée partielle de la force résultante f (7', L) exercée sur
I’élastique par rapport a la température lorsque sa longueur est fixée.

2) Exprimer le transfert de chaleur durant la variation isotherme de la lon-
gueur AL;_, ¢ de I'élastique d’un état initial ¢ & un état final f.

3) Déterminer la dérivée partielle de la température T' de 1’élastique par rap-
port a sa longueur L lors d’un processus adiabatique réversible.
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4.15 Sous-systemes et réservoir de chaleur et de travail

Yrok®x  On considere un systeme fermé et déformable contenant un gaz homo-
gene. Le systéme est constitué de deux sous-systemes simples séparés par une
paroi fixe, perméable et diatherme. Le systéme a une température T et une
pression p constantes car il est a I’équilibre thermique et mécanique avec un
réservoir de chaleur et de travail & température T ey et pression pey; (fig. 4.1).
L’énergie interne de la paroi est négligeable.

1) Exprimer la différentielle de I’énergie libre dG en fonction de la source
d’entropie Xg.
2) Exprimer la différentielle de I’énergie libre dG en fonction des potentiels

chimiques p; et po du gaz dans les sous-systemes 1 et 2. En déduire que
dG £ 0.

4.16 Turbine isotherme

Yrok On considere un systéme ouvert constitué de deux sous-systémes
simples, considérés comme des blocs rigides contenant un fluide incompressible
homogene en mouvement a vitesse uniforme. Les deux blocs sont séparés par
une turbine effectuant un travail externe sur le fluide lors de son transfert
du sous-systeme 1 au sous-systeme 2. L’ensemble est maintenu & température
constante T (fig. 4.2). L’énergie interne de la machine est négligeable. Les trans-
ferts de chaleur et de matiére & travers la machine sont stationnaires. Ainsi,
par rapport au référentiel des blocs, les vitesses v, et vy du fluide dans les
deux blocs sont constantes et telles que v? > v3. De plus, I’énergie cinétique
de rotation de la turbine est constante et n’intervient pas dans l’analyse.

réservoir de chaleur et de travail

Fig. 4.1 Un systéme fermé et déformable contenant un gaz homogene est divisé en deux
sous-systémes simples par une paroi fixe, perméable et diatherme. Le systéme est a I’équilibre
thermique et mécanique avec un réservoir de chaleur a température Text €t pression pext.
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Fig. 4.2 Une turbine effectue un travail externe sur un fluide qui est transféré de maniere
stationnaire du bloc 1 au bloc 2 & température constante. Les courants de chaleur Icgﬁl et

IQ2AO décrivent le transfert de chaleur entre I’environnement et le systéme et les courants

énergétiques de matiere Igﬁl et IC%HO décrivent le transfert de matiére.

On dénote Ig_” et 127! le courant de chaleur et le courant énergétique
de matiere de l’environnement vers le bloc 1, Ié_ﬂ et Icl_>2 le courant de
chaleur et le courant énergétique de matiere du bloc 1 vers le bloc 2, et ICS_’O et
1, C%_)O le courant de chaleur et le courant énergétique de matiere du bloc 2 vers
I’environnement. On suppose que le transfert de matiere entre I’environnement
et chaque bloc a lieu au potentiel chimique du bloc. Au chapitre 8, on montrera
que les potentiels chimiques du fluide dans les sous-systemes s’écrivent,

,ulzhl—Tsl et [LQZI’LQ—TSQ

ou hi et ho sont les enthalpies molaires du fluide dans les deux blocs et s; et
$o sont les entropies molaires du fluide dans les deux blocs. Durant le transfert
stationnaire de matiere et de chaleur :

1) Montrer que les courants de fluide satisfont I'identité,
I = IO—>1 — Il—>2 _ [2—>0 >0
2) A Taide des équations de bilan de masse et des courants de masse,
IAO4—)1 _ mIO—>1 et I]2V[_>O — m12—>0

ou m est la masse molaire du fluide, montrer que les courants de masse
satisfont l’identité,

IM — JOW—>1 — I]\l/[—>2 — ]2\4—)0 >0
3) A T’aide des courants d’entropie,
ISO~>1 = s I0~>1 et ISQ‘HO = 89 1'2~>O

exprimer le courant de chaleur I de l'environnement vers le systeme en
termes du courant de fluide I et des entropies molaires s; et ss.



4)

Turbine isotherme 5

Exprimer le courant énergétique de matiere I de ’environnement vers le
systeme en termes du courant de fluide I, des enthalpies molaires hy et ho
et des entropies molaires s; et ss.

Déterminer le courant d’énergie interne Iy de ’environnement vers le sys-
teme.

Exprimer la puissance extérieure Pt de la tubrine en termes du courant
de fluide I et de la masse molaire m.

Déterminer la relation qui lie les enthalpies molaires h; et hy et les vitesses
v1 et vy du fluide.

Dans le cas particulier ou la turbine se comporte comme une paroi per-
méable qui laisse simplement passer le fluide d’un bloc a l'autre sans effec-
tuer de travail externe, c’est-a-dire que P = 0, lier les vitesses vy et v
entre elles et les enthalpies molaires hy et ho du fluide entre elles.



